

ASCI Software Requirements

Thuc T. Hoang Office of Advanced Simulations & Computing (ASCI)

12/13/2001

http://www/llnl.gov/asci

3-teraOPS ASCI platforms

ASCI Red

- SNL (Intel prime contractor)
- 3.15 teraOPS peak
- 2 processors per scalable unit
- UNIX operating system
- 9360 333 MHz processors
- 1.2 terabyte memory
- 12.5 terabyte storage

ASCI Blue-Pacific

- LLNL (IBM prime contractor)
- 3.89 teraOPS peak
- 4 processors per scalable unit
- AIX operating system
- 5856 332 MHz processors
- 2.6 terabyte memory
- 52.5 terabyte storage

ASCI Blue-Mountain

- LANL (SGI prime contractor)
- 3.072 teraOPS peak
- 128 processors per scalable unit
- IRIX operating system
- 6144 250 MHz processors
- 1.5 terabyte memory
- 76 terabyte storage

Page 2 SDP Workshop 12/13/2001

More powerful platforms are required

ASCI White

- LLNL (IBM prime contractor)
- 12.3 teraOPS peak
- 16 processors per scalable unit
- AIX operating system
- 8192 310 MHz processors
- 6 terabyte memory
- 160 terabyte storage

ASCI Q

- LANL (Compaq prime contractor)
- 30 teraOPS peak

Upcoming Systems:

- •SNL "Red Storm" System 20 TeraOps
- •LLNL "Purple" System 60 TeraOps

Page 3 SDP Workshop 12/13/2001

ASCI Office of Simulation & Computer Science Provides the Necessary Infrastructure to Run ASCI Platforms

Visualization

Scientists

Provide to the designers, engineers and scientists world-class computing & visualization infrastructure required for SSP simulations

Page 4 SDP Workshop 12/13/2001

Visual Interactive Environment for Weapons Simulation (VIEWS) High-end Services From/To the Desktop

EXAMPLE:

Sandia Labs' current emphasis on the following system components:

- Data Services
- Scalable Rendering
- Deployment of needed infrastructure and facilities

Page 5 SDP Workshop 12/13/2001

VIEWS Functional Architecture

Data Sources: Simulations, Archives, Experiments		Users
	Permutation 1D/2D Data Alge $M \Rightarrow N$ Filtering Subsetting $x,y,z \Rightarrow n$	
	Format/Representation Data Data Conversion Reduction Serving	Navigation
Information Feature Detection and Extraction Data Fusion & Comparison		Rendering Control
Services:	Visual Representations Generation (eg. isosurfaces) Volume Visualization Prepara (eg. opacity assignment, resamp	Advanced
Surface rendering Volume rendering Runtime services Visualization		Collaborative Control
Services:	Multi-Visualization Time Sequence Technique Combine Generation	Display Control
Display Mo	dalities:Desktop DisplayTheater DisplayPowerwallsImmersi Stereose	

Page 6 SDP Workshop 12/13/2001

Distance Computing (DISCOM) Provides the Bridge Between Designers/ Analysts and High-End Distributed Computational Resources

The ASCI WAN provides much improved access to the complex's classified weapon information, wherever it is located.

Desktops to TeraOps!

Providing designers, analysts, and engineers, the portal to high-performance computing resources

Strategies:

- Develop, deliver, deploy an effective & efficient production distance computing solution
- Integrate computing capabilities distributed throughout complex
- · Grid computing

Page 7 SDP Workshop 12/13/2001

Problem-Solving Environment (PSE) enables the Labs to have a high-performance, secure, integrated infrastructure

Page 8 SDP Workshop 12/13/2001

ASCI PSE Simulation Development Environment:

Scope and Requirements

Scope of this project:

- Critical user level development and run-time software
- Methods and analysis to enhance performance of ASCI applications

Requirements:

- A common, full functioning development environment:
 - compilers, parallel debugging and performance tools, ...
- Scalable, robust, reliable, run-time systems (e.g. MPI and thread packages)
- Portable parallel programming models
- Performance tuning, modeling, analysis and benchmarking services
- Scalable linear and non-linear solvers deployed in the codes
- Portable high performance application frameworks to facilitate code reuse

Page 9 SDP Workshop 12/13/2001

ASCI PSE Data Transfer and Storage:

Scope and Requirements

- Scope of this project:
- "end-to-end" high-performance I/O and data movement capabilities for ASCI Stockpile Stewardship 3D physics simulations
- Integrated I/O subsystems, hierarchical storage management, visualization needs, networks and capacity computers for pre- and post-processing
- Requirements:
- ASCI calculations in 2004-2005 will need platform disk I/O rates at 100-150
 GB/s and archival tape I/O rates at 10-15 GB/s
- Reliable, scalable, parallel I/O libraries and file systems
- Reliable, high speed interconnects to peripherals and servers
- > High-capacity, high-performance, reliable *archival storage systems*
- Must scale with ASCI platform capabilities and application data needs

Page 10 SDP Workshop 12/13/2001

ASCI PSE Computer System Infrastructure:

Scope and Requirements

Scope of this project: the critical system software Infrastructure for secure, effective use of ASCI platforms for Stockpile Stewardship physics simulations

Requirements:

- Common security infrastructure and tools for NWC
- Node operating systems that function effectively for ASCI applications in a large cluster environment
- Effective resource management systems for ASCI computers
- Scalable easy-to-use system administration tools
- Effective system level diagnostics to ensure platform reliability

SDP Workshop 12/13/2001 Page 11

ASCI Software Requirements

We need software tools and technologies that enable our applications codes to be more:

- Scalable
- Portable
- Parallelized

http://www/llnl.gov/asci